"AD704163

AN INTERACTIVE GRAPH
THEORY SYSTEM*
by
Michael S. Wolfberg

N
A '-.
i # ob 77
i
f
L U
A
This ‘ . its
‘ 3 . L o
Ut
Reproduced by the for ?‘ ‘: . itod
CLEARINGHOUSE distributi=n »
for Federal Scientilic & Technical &

Information Springfield Va. 22151

Massachusetts

COMPUTER ASSOCIATES

division of

APPLIED DATA RESEARCH, INC.

M

BEST
AVAILABLE COPY

: MASSACHUSETTS COMPUTER ASSOCIATES
' " BIRoN O APPLIED DATA RESEARCH, G,

l‘ b LAKESIDE OFFICE PARK WAKEFIELD, MASSACHUSETTS 01880 (617) 245-9540

AN INTERACTIVE GRAPH
THEORY SYSTEM*
by
Michael S, Wolfberg

~ CA-7003-0211
March 2, 1970

This !s a preprint of a paper to be presented at:

Computer Graphics 70 International Symposium
April 14-16, 1970

Brunel University

Uxbridge Middlesex England

1

*Thls paper, written for the Advanced Research Projects Agency under
ARPA Order Number 1228, describes work done at the Moore School of
Electrical Lngineering, University of Pennsylvania, Philadelphia,
Pennsylvania for Rome Afr Development Center and the Information Sys-
tems Branch of the Oifice of Naval Research under Contract NOnr 551(40).

ABSTRACT

This paper describes an interactive graphics system for solving
graph theoretic problems. The system is implemented on a reirote graphics
terminal with processing power connected by voice-grade telephone line to
a central computer. The patential of using the terminal as a programmable
subsystem has been exploited, and computing power is appropriately divided
between the two machines. In order to express interactive graph theoretic
algarithms, the central computer may be programmed in un algorithmic language
which includes data structure and associative operations. Lxamples of system
use and programming are presented.

JABLE OF CONTENTS

ABSTRACT
INTRODUCTION
ENVIRONMENT
A USLR'S VIEW
Figure 1
Figure 2
Figure 3
Figure 4
THE ALLA DATA STRUCTURE AND LANGUAGE
EXAMPLE OF A GRAPH THEORETIC ALGORITHM
Figure S
IMPLEMENTATION OF I.U.LA
ROLL OF THE GRAPHICS TERMINAL
INTERACTIVE PROGRAMS
EXAMPLE OF AN INTERACTIVE PROGRAM
Figure 6
SUMMARY
REFERENCES

© o N O»n W w

11
12
is
15
18
20
21
22
24

g

INTRODUCTION

The medium of computer graphics provides a capability for dealing
with pictures in man-machine communication. Graph theory is used to
model relationships which are represented by pictures and is therefore an
appropriate discipline for the application of an Interactive computer graphics
system. Previous cfforts to solve graph theoretic problems by computer
have usually involved specialized programs written in a symbotic assembly
language or algebraic compliler language.

In rucent years, graphics equipment with processing power has
been commercially available for use as a remote terminal to a large central
computer. Although these terminais typically include a small general pur-
posc computer, the potential of using onc as a programmable subsystem has
received little attention,

These motivations have led to tiie deslgn and implemerntation of an
interactive graphics sys.tcm for solving graph theoretic problems. The sys-
tem operates on an 18BM 7040 with a DEC~338 graphics terminal conrected by
voice-grade telephone line. To provide effective resoonse times, ~omputing
power {8 appropriately divided becween the two macnines,

The remcte computer graphics terminal {8 controlled by a special-
purpose executive program. This exezutive includes an Interpreter of & ¢com-
mand language orientcd towards controlling the 2xistance a~d display of
qgraphs. Soveral Interactive functions, such as graph crawing and ediiing,
are available to a user thrcugh light button and pushbutton selection. These
functions, which are local to the te'minal, are programmed in a mixture of the
terminal computer's machine language and the interpreter command language.

For more significant computations the central computer is used, but
response time for interactive operation is then diminished. I[n order to over-
come the low bandwidth of tie telephone lin%, the central computer may call
upon a program at the terminal as a subroutine,

K

Based on the mathematical terminology used to define graphs, a
high level language was developed for the specification of interactive al-
gorithms. A growing library of these algorithms includes routines to aid in
the construction and recoanition of various types of graphs. Other routines
in the library are used for computing certain properties of graphs., Graphs
may be transformed by some routines with respect to both connectivity and
layout. Any number of graphs may be saved and later restored,

A programmer using the terminal as an alphanumeric consoie may call
upon the programming features of the system to develop new interactive
algorithms and add them to the library. Programs may also be created for the
graphics terminal, using the central computer for assembly.

ENVIRONMENT

The Interactive Graph Theory System is an experimental computer
software system which operates as a uscr program in the environment of
the Moore School Problem Solving Facility {or MSPSF) at the Moore School
of Electrical Engineering of the University of Pennsylvania, The MULTILIST
Project at the Moore School designed and developed the MSPSF as an attempt
to combine storage and retrieval capabilities of a compu’er with its com-
putational power to solve problems (3, 7, 8, 9, 10].' The hardware used
for this work consist. of a multi-console system attached to an IBM 7040
cential processor, C.ince the 7040 does not directly support a varicty of
terminuls, 8 small DEC PDP-8 computer Is interfaced to the 7040 and is used
to service Teletypes over 110-baud dial-up telephone lines and an elaborate
graphics terminal via a 2400~-baud private line. The graphics terminal is a
DEC-338 Programmed Buffered Display, which includes a PDP-8 computer as
one of two processors; the other is a more specialized proces=-r oriented
towards the control of an attached digital CRT display, Both processors share
a common 8192-word 12~bit core memory with 1.5 8 cycle time. Although the
DEC-338 can be used as a stand-alone system it i{s configured as a remote
computer graphics terminal, with a fixed-hecad minidisk of 32K 12-bit words
and one DECtape for more permanent storage, The terminal includes an ASR-33
Teletype for keyboard and paper tape inout and printed (and punched tape)
output, a box of pushbuttons, and a light pen for craphical input.

A USER'S VIEW

A uscr of the Interactive Graph Theory System sits in front of the ten-~
inch-square display screen of the graphics terminal with thie light pen in
one hand and the pushbutton box conveniently placed for accessibility by his
other hand. The system at the user's fingertips provides a simulated plece of
“paper” on which he may draw an abstract graph. The user directs the system
by using the light pen to point at light buttons and by depressing appropriate

'Numbers within brackets indicate refercnces.

. S

pushhuttons. Indicative messages displayed Ly the system {nstruct the
user of what he may cause to happcn. The novice user slowly reads these
messages and carefully points at his cholce of light buttons, giving the
appearance that the system is controlling him. The experienced vuser,
however, so quickly points at light buttons and depresses pushbuttons that
he appears to control the system,

The user is given the tools to construct a graph of arbitrary connec-
tivity consisting of any number of vertices and directed or undirected arcs.
Any vertex or arc may be labelled, and the relative position of each label may
be individually controlled. Six distinguishable shapes are available for
vertices, while arcs are generally straight lines directly connecting a pair
of vertices. An elliptically-shaped arc is employed when it is a loop con-
necting a vertex to itself. The user may view the graph on the “"fill" paper
or he may select any one of three smaller window sizes (half- fourth-, or
eighth-paper) and "move" the window to a chosen section of the paper for
more detailed work. The user is given the facilities for altering or deleting
any part of a graph on the paper.

Once a user has drawn a graph he may save it for future use along
with any number of associated key words in the large file or data base which
is available for all users of the MSPSF, Later restoration of any number of
graphs may be specified by a reirieval description as a logical combination
of key words.

The Interactive Craph Theory System includes a growing library of
interactive graph theoretic algorithms which the user may call upon. He may,
for example, choose to apply a particular algorithm to a graph which he has
drawn. Figure 1 is a picture of the display screen resulting frcm & shortest
path algorithm applied to a graph which the user drew. The integers along the
directed arcs ara labels the user included to indicate the cost of traversing
each arc, The path computed by the system, indicated by darker arcs, is a
minimum cost path from the upper vertex as the given starting point to the
lower one as the given ending vertex. With this interactivc algorithm, the
user may request the shortest path between any pair of vertices; he may also
alter any aspect of the graph and again scek a shortest path.

3

Figure 1.

A Shortest Path Computed

Figure 2 shows another example of the application of an interactive
algorithm to a user-drawn graph. In this case the user has drawn a non-
cyclic graph and then applied a layout algorithm to move the vertices so
the graph appears in the form of a tree. Next, the user caused the algorithm
to further refine the layout of the tree by permuting the order of the five arcs
emanating from the root. In particular, the leftmost arc moved to the fourth
position and the tree then appeared as in Figure 3.

Another algorithm which has been included in the system determines
all maximally complete subgraphs of a given non-directed graph.* This al-
gorithm alters the shapes of vertices to display to the user one such sub-
graph at a time. Figure 4 shows one maximally complete subgraph which has
been computad.

These three algorithms demonstrate the types of graph theoretic prob-
lems which can be solved. The novice user can take advantage of the Inter-
active Graph Theory System to the extent of applying existing interactive al-
gorithms, but the primary significance of the system is the way in which users
can compose interactive graph theoretic algorithms as programs in a compiler-
level language. To enable the user to devélop programs, the graphics term-
inal can be made to operate as a text consolc. In thig mode the DEC-338 °
mimics the characteristics of a Bunker-Ramo Teleregister alphanumeric con-
sole, which used to be a terminal of the Moore School Problem Solving
Facility. The aisplay screen is arranged as twelve lines of 64 characters
each, and the Teletype xeyboard is used to control the contents of the sareen,
with some of the special characters reserved for local character er.ting
functions. One of the keyboard characters has the meaning of the TRANSMIT
key of the alphanumeric console, which is to cause transmission of the con-
tents of the display screen from the terminal to the computer. The DEC-338
is used as a text console in this system fcr preparing and editing programs,
file manipulation, and data retrieval.

1'*A complete subgraph of a given undirected graph G is a subgraph of G such that
each pair of vertices of the subgraph is connected by an arc. A maximally com-
plete subgraph of a given undirected graph G is a complete subgraph of G which
is not a subgraph of any other complete subgraph of G.

s

P80 9 10 PERNUTL ARCS
PO 10 FOR ANOTHER ROOT
PO 11 O ALYLR SRAPH

Figure 2.

A Tree After Layout

0 9 10 PLANUTL ARCH
®0 10 FOR ANOTIRR 2007
P9 11 1O ML oRaPN

Figure 3. The Same Trece with Arcs Permuted

o Y 19 Sudun
9 ¢ 10 L Mt o

Figure 4. A Maximally Complete Subgraph Computed

THE ALLA DATA STRUCTURE AND LANGUAGE

The approach taken to regresent graphs in this system was dictated
by the classic definition: a graph Is an ordered pair of sets (X, I'), where X
is a set of elements (vertices) and T'is a set or ordered pairs of elements of
X (arcs) [1). The I'ORTRAN IV language was chosen as @ base, and a new
data type was Introduced which would allow for the representation of ordered
pairs, sets, and other appropriate constructs not representable in FORTRAN IV,
Also Incorporated s the facllity to associate an arbitrary amount of data
with any element of the data structure, The approach used was based on that
used by George Dodd in the design of the Assoclative Programming Language
as an extension of PL/1 [2). This extension of FORTRAN is called ALIA. One
deficiency of Dodd's APL which has been eliminated in ALLA is the necessity
for specifying In advance the allowable associations an entity may have,

The additional data type which has been introduced i{s named entity.
There is no literal naming of entities in ALLA except for the undefined entity
UNDEr. Instead, entities are referenced through entity variables or by a
relation or assoclation with an entity, Ther~ are three types of entities: atom,
pair, and set, LCach declared entity variable may, at any one time, name a
particular atom, pair, or set, or it may have a value of UNDLF,

Ench atom, pair, or sct may have any amount of assoclated data, An
assoclated datum s called a property and is referenced by a property name.
The value of the property of an entity may be an integer, real, or logical
constant, or it may be an entity.

An entity of the type atom s one which has no structure other than its
associated properties. A pair is a type of entity which, in addition to any
properties, has a left-clocment and a right-element, each of which may be

an entity or may be undefined.

A set, besides having associated properties, Is a structure with any
number of elements, each of which must be an entity. A set may have no ele-
ments, in which case it is called empty. Altl - ugh the word "sct” is used,

10

the implementation imposcs an ordering to the elements, and 0 one moy

make use of the "list” nature of this structure. Also, membership in a set

is not limited to a particular element appearing once. There are no restrictions
on the structuring of data in this system. For example, a particular set

may even be a member of itself three times. More important, hiowever, is

the unlimited hierarchy of the relationships which can be modelled in this
structure.

With this data structure a graph will be defined as an ordered pair,
where the left-element of the pair is the set of vertices, and the right-clument
is the set of arcs. Each arc is an ordered pair, where the left element is
the "from«ertex” of the arc, and the right element is the “to-vertex". Each
vertex will ordinarily be an atom, but the ALIA data structurc permits any
type of entity as an element of a pair or set. Thus one could cven represent
a yraph of graphs, or other interesting structures. More commonly, one finJs
the tollowing structures appearing in graph theory manipulations:

1. A set of arcs (where order §s important) for a path,

2. A setof arcs as an entity property of a vertex for its outgoing arcs.
3. A set of vertices as an entity property of a vertex for {ts neighbors.
4. An integer proparty of a vertex for its depth In a tree.

EXAMPLE OF A GRAPH THEORETIC ALGORITHM

Instead of presenting a full description of ALLA, a practical example
will be explained in detail. The SiIPTHW function chosen for this illustration
is the algorithm for finding a shortest path in a weighted directed graph, it
was this function, used along with an interactive ALLA routine to interface
with the user, which was responsible for producing Figure 1, The reader should
refer to the source listing of SHPTIHIW in Figure 5 in the following discussion,
The lines of the function have been numbered for reference.

Figure 5 constitutes the definition of the function SHPTHW whose
value or result is a shortest path given a graph G and the starting vertex A and

11

LINE

ENTITY FUNCTION SHPTHV(A,LH,G)
ENTITY ﬂoB.BoUSET.TDSFT.V.OAV;RVOAV.AA
ENTITY INAKC,OUTAKC

INTEGER VEIGHT,DIST

PROPEKTY DIST

THROUGK 15 FORALL v N LEL¥(GC)
15 DIST(V) w 1555555,

DIST(n) = o

INSERT A INTO CHSET(DSET)
TDSET =« DSET

CREATF SET DSHFT

- e
0&*’0(&&9-’0-&’0QQGU‘DU”-
[
©

! THHOUGH 45 FORALL v IN TLSET
! THROUGH 35 FonialL oav IN OUIAKC (V)

| RVOAV = KELMCOAV)

| IF (DISTCRVOAV)Y oL}, (DISTCV) o WEIGHT(0AV)Y)) GOTO 30
! DISTC(HVOAV) & DIST(U) o LEIGHTc0AV)

! INSERT RUOAV IN10 DSE]

! 35 CONTINUE

| A5 CONTINUE

eso DELETF TDSET

el IF CoNOT.EMPTYC(DSET)) COTO 22

ee DELETE DSET

23 CREATE SET SHPTH

24 IF (DIST¢B) K0, 15055555) coT0 355

s Vep

26 1S IF Vv «FQ. A) GOTO 3590

27 TPROUGH 125 FORALL AA IN INAKC (V)

28 125 IF ((ﬂlST(LELM(AA))OHE!GHT(AA))oEOoD!ST(U)) GOTO0 135
29 CALL ERROKCEHSHPTHY)

3% 13 INSENT Aaa INTO SEPTHw

31 V = (ELMCAN)

Je GOT0 115

33 355 RETUM:

Ja4 END

Figure 5. Shortest Path Function

12

g

=

|

ending vertex B. The result of the function is a set of arcs of the given
graph; if no path is possible, the set Is empty. Line 1 is the function dec-
laration. it is an entity function since its result is an entity, i.e, a set of
arcs. Lines 2 through 4 declare the data types of the three arguments of
the function and all of the voriables used within the function body, both
locals and externals. Line S declares DIST as a property name.

The SHPTHW function assumes that the given graph is of the form
described in ti.» previous section, and assoclated with cach vertex is its
set of incoming 2:cs (INARC) and its set of outgoing arcs (OUTARC). Also
assoclated with each arc of the given graph is its integer weight (WEIGHT).
Throughout the body of the function the uses of the names INARC, OUTARC,
and WEIGHT are purposely ambiguous., That is, the ALLA syntox is ambig-
uous, s0 that each of these threce names may be either properties or functions;
only the environment determines which is the case. Thus the SHPTHW
function assumes cither the given graph already possesses values of the
three properties, or thern are equivalent functions which compute them,

The program, which employs Moore's algorithm [6), begins on lines 6
and 7 by assigning an associated distance of infinity (actually ten million
here) to each vertex in the given graph, The THROUGI! statement ~n line 6
spocifies that the entity varfable V should on cach iteration of the range of
the THROUGH loop assume the value of the next element of the set LELM(G).
The term LILM(G) represents the left-element of the pair G, which is the set
of vertices of the given graph. On line 8 the starting vertex is given an
associated distance of 0. The property DIST is being used to represent the
minimum known path cost from the starting vertex. initially, the distance
assigned to the starting vertex is trivially known to be 0. All other distances
are assumed to be infinite, since without considering the graph's connectivity
all other vertices are potentially unreachable.

The algorithm consists of an iterative search on lines 9 through 21
followed by a reverse trace. The search begins at the starting vertex and a
distance is assigned to each vertex which can he reached from the starting
vertex by traversing one outgoing arc. Next, a distance is assigned to each

13

“ncighbor* vertex which is connected by an outgoing arc to one of the ver-
tices just assigned. The distance of each neighbor vertex is equal to the dis-
tance of its nrevious vertex plus the weight of their connecting arc. If a
distai..c has »lrcady been assigned to a vertex, it is replaced with a new dis-
tance only when the new distance {8 numorically smaller. This process is
repeated until a pass is made which does not improve any distance in the
graph. At this time, the distance associated with each vertex in the graph

is the minimum cost to reach that vertex from the given starting vertex.

The statement on line 9 should be read as “insert the clement named
by entity variable A into a created set henceforth named by entity varfable
DSET". The statement on line 10 has entity variables on both sides of the
equal sign. Whereas FORTRAN semantics dictate a copy would be made {f
these were integer, reui, or logical variables, the entity variable TDSLET is
made to reference (or name, or point to) the entity referenced by DSET, In
general, this intorpretation applies to entity expressions on the right side of
the equal sign, as occurs on line 14,

During each iteration of the scarch, the entity variable TDSET refer-
ences the set of previously assigned vertices, DSET names the set used to
keep track of the new vertices being assigned during an fteration. Line 21
contains the test for whether another iteration is nceded. EMPTY is a pred-
fcate function which is .TRUL. when its argument {s a set with no members.

Note that the ALLA programmer is required to perform his own manage-

ment of storage: on each iteration the DELETE statement on line 20 ccuses

the freeang of the space uscd to model the set referenced by TDSET. |
After the last iteration there is a check at line 24 to ascertain {f the

given ending vertex has been assigned a distance; {f its distance has remained

infinite it cannot be reached, and there is no trace. Otherwise, the trace

starts with the ending verte>. at line 25, Each incoming arc is considered along

with the vertex from which the arc emanates. -If the distance of that vertex

plus the weight of that arc equals the distance assigned to the ending vertex,

that arc is part of a shortest path., This process continues until the statement

14

ER

%

on linc 26 determines the starting vertex has been reached, ot which tinie
the answer has been computed as the sct of arcs SHPTHW,

IMPLEMENTATION OF ALLA

The ALLA data structure and language which has been introduced above
is implemented on two modular levels. First, the compilation of the language
is effected by preprocessing all of the non=-I'ORTRAN statements into FORTRAN
subroutine and function calls. The package of subroutines which constitutcs
the run-time system to realize the ALLA data structure is the second level of
implementation. Ir order to provide for machine independence, and allow
for easier writing, debugging, and modification, the LG language was sclected
for both the implementation of the ALIA data structure into a particular memory
structure, and the preprocessing of ALLA into FORTRAN, L6 was originally
designed and implemented at the Bell Telephone Laboratories where it was
named "Bell Telephone Laboratories' Low-Level Linked List Language" or .6
(pronounced "L-six") [5). Based on the original implementation on the IBM
7094, the author lmplerﬁéntcd UP.L6 for the IBM 7040. In the process of
translation, improvements anu new features were added, including the facility
of linking L6 programs with both FORTRAN and MAP assembly language sub-
routines [12).

The separation of data structure (the ALLA prograiamer's view) from
thie implementation of memory structurc (the systeme programmer's view) is
most valuable, especially when the language used to implement m: mory
structure is of the level L6, This modularity supports the freedom to reorganize
the memory structure at any time in order to adjust time-space operating
characteristics. Also, a rescarcher may use such a framework for comparative
studies of memory structures. For example, a doubly-linked list approach
might be compared against the utilization of lists with only forward pointers.

ROLE OF THE GRAPHICS TERMINAL

A common concern of designers of computer graphics systems is the
choice of data and memory structures not only to model relationships among

15

.

|

the data, but also for the maintenance of the display of the data. When a
single computer system {s used for the implementation of o computer graphics

system, the tendency is to employ one structure which car. also be used to
drive the display controller. llowever, when the graphical equipment re-
sides at a remote site along with a small computer linked to the central com-
puter by voice-grade telephone line, ¢t lecst a graphics-oriented structure
must be maintained at the terminal for 2ffective interaction.

One possible solution to the need for two structures in two (often)
different computers {s the {mplementation of the same structure in both
machines, Perhaps the terminal computer would handle a subset of what the
central computer can do. A strong motivation for such an approach is the
capability for having programe which can operate in either or both machines.
Although this is potentially powerful, unless the two computers are appro-
priately related, it could be stifling to the effectiveness of both machines.
Namely, the structure in the smaller one might be so gencral that {ts small
capacity 15 too quickly excreded, and, at the same time, the possibilily for ‘
sophistication i{n the larger machine might be suppressed,

The advantages of modularity have dictated the division of labor em-
ployed in the Interactive Graph Theory System. A speclal-purpose structure
in the graphics terminal conteins only the parameters relevant to the display
of graphs. This structure and its associated display file are managed by a
special-purpose exccutive program named DOGGIE, for Display of Graphics
Graphical Interpretive Execui. e, which controls the DEC-338 terminal, As
its name indicates, its primary role is the interpretation of a special-purpose
command language., DOGGIL commands are scanned by the Interpreter as
sequences of 12-bit bytes which may either be received from user programs
running in the DEC-338 {tself. 1600g locations of the DEC-338 are reserved
for the execution of these user programs which consist of » mixture of PDP-8

machine language and DOGGIL command language. A programmer-user of this
system may casily avoid the need for knowledge of the DEC-338 and restrict

his programming efforts to the interactive ALLA language. However, the
facilities are avallable for anyone to write his own user programs. User program
preparation is performed using the terminal as a text console. The assembly

16

of DEC-338 programs is carried out on the IBM 7040 by the PDPMAP
Assembly System [4], which is significantly superior to using the DEC-338

itself,

All DOGGIE commands implicitly refer to a scratchpad "paper"” on
which a single graph may be deafined. It is only one graph in the sense that
there is no facility for hierarchical grouping; however, the singlc graph
may consist of any number of disjoint components which may give the effect

of displaying more than one graph at a time. The graph may consist of any
number of vertices or arcs, and it may be only partially defined at any time,
since it is permissible to define an arc in terms of vertices which do not

yet exist,

There is separate control over which parts of the defined graph

are to be displayed.

The graph maintained by DOGGIE is built, modificd, and deleted
through interpreted DOGGIE commands. The command languige includes ele-
ments which affect the gross aspects of the existing graph or the way in
which the graph i{s being displayed. A group of commands may refer to a

unique vertex or arc by internal name or to all existing vertices or arcs, The

option is also available for DOGGIE to supply a created internal name when
a vertex or arc is defined. A list of other services perfcrmed by DOGGIE

follows:

1.

2.

4.

S.

manages all input/output of tlie DEC-338 by handling interrupts
from the various display flags, the Dataphone interface, the
minidisk, and the Teletype.

manages the display of the graph on the "paper" with four win-
dow sizes avallable for viewing all or any part of the paper.

performs light pen tracking with optional horizontal and/or ver-
tical constraints on a pseudo-pen-point.

interprets light pen hits as a result of a user's pointing at dis-
played parts of a graph.

helps in the management of the pushbutton box,

17

ry

*r

"t

te |

6. handles overlays of user program segments by name by inter-
facing with the PDP-8 Disk Monitor System,

7. collects and maintains status information concerning the state
of DOGGIL and its existing graph,

Note that this system design gives the programmer explicit control of
what is displayed instead of automatically monitoring the ALLA structure,
Also, the division of labor employed makes it feasible to substitute another
computer at either end of the telephone line, For example, an equivalent
DOGGIE executive and set of user programs could be implemented on an ADAGE
terminal,

INTERACTIVE PROGRAMS

A user program which operates at the tegyminal is appropriate for prob-
lems whzre nearly instantaneous system response is important. An interactive
algorithm may be entirely resident in the DEC=-338, it may be entirely resident
in the IB'M 7040, or it may be divided between the two computers. There are
facilities to shift the center of control from one computer to the other. For
example, an interactive ALLA program running in the IBM 7040 may call upon
a user program in the DEC-338 as a subroutine.

An interactive algorithm written for execution at the terminal may be:
appropriate only if minor computing is required and if associated data can be
conveniently represented within the framework of the terminal's data structure.
Although this is not the recommended method for implementing graph theoretic
algorithms, the power of the small machine has been demonstrated by imple=-
menting a user program which interprets a Mecaly state graph prepared in a
prescribed format and carried out the operations of a finite state acceptor.

The "current" state is indicated by a blinking vertex, and the user supplies

an input character from the Teletype keyboard (or paper tape recader). According
to the typed (or read) character, an output character (or string) is immediately
typed out on the Teletype printer, and the new current state is made to blink. i

18 i]

The set of DOGGIE com:nands constitutes a machine-independent
language for controlling the display of graphs. The language jn the pure
sense is not interactive since it s only an output language. It becomes
interactive when used in conjunction with other languages which include
control specification. The DOGGILE larguage is used in two different en-
vironments within the Interactive Graph Theory System: first, it Is embedded
into ALLA language for exccuticn in the IBM 7040. Second, it is embedded
into PDPMAP Assembly Language through macros for use in user programs
operéting in the DEC=-338. Th~ use of the DOGGIE language in either environ-
ment has the same meaning, which is to direct the DOGGIF interpreter to
perform commands which define, alter, and display graphs.

The writing of interactive programs s somewhat different in the two
environments, but the basic ldea is common to both languages, The input
aspect of the interaction is accomplished by programming in the host languagce
the observation of communication cclls. These cells reflect the status of
the DEC-338 and DOGGIE back to the programmer, The informmation contained
in these cells includes:

1. current graph display status ~ intensity, window size and
position,

2. light pen tracking indicators,
3, indication of the amount of available frec blocks,
4. light pen hit information, and

5. complete status output for a vertex or arc.

A communication cell is a rather natural concept for use in the DLC-
338, for in that environment it is simply an accessible mcmory location, Uscr
programs operating in the DLC-338 are written with references to the sym-
bolic names of these cells. There arec some communication cells in the DEC=-
338 which are used as indirect addresses of subroutines included within
DOGGIE such as the subroutine to send an 8-hit character over the Tclephone
line. A number of communication cells of this type are not duplf: ited {r the

ALLA environment,

19

Com:nunication cells in the ALLA environment are referenced o
any other FORTI'' N Integer variable or logical variable. They are auvtumatically
declared in cach ALLA subprogram, so the programmer simply references
these cells by symbolic name.

Many of the communication cclls in the 7040 are essentially copies
of the "real” cells in the DEC-338., The “real” introduced here means real-
time. lor example, a pair of communication cclls indicates the position of
the pscudo=-pen-point linzed to the light pen trac) .ng cursor. In the DLC-
3138, user programs observine these cells may do so in real-time. However,
the communication cells 6f the DEC-338 are copied over to the 7040 only
when requested by certofn statements in interactive ALIA programs. Since
this copying operation takces about one or two seconds to complete, and since
tracking may alter the position of the pseudo-pen-point every few milliseconds,
the communication cells in the 7040 cannot reflect this data in reg)-time.

EYXAMPLE OI' AN INTERACTIVE PROGRAM

An exanmple of a rather small, yet complcte ln(gmctlvc ALLA program
is presented in Tigure 6. The following discussion refercnces the SAMPLE
subroutine in Figure 6, which assumes a graph s already being displayed at
the terminal, On line 2, the subroutine call causes tha clearing of the flag
associated with pushbutton number 11 on the pushbutton box at the terminal.,
Line 3 contains a DOG staten.ent which indicates the remainder of the line is
a symbolic DOGGIE command. This symbolic form of DOGGIL command causcs
two 12-bit bytes to be sent to the DLLC=-338: octal 3600 and 0000, which the
DOGGIE interpreter will interpret as a command to make light pen sensitive
all vertices currently existing in the graph. Next, the statements on lines 4
through 7 cause a mmessagce for the uscr to be placed on two message lines at
the lower left corner of the terminal's display screen, As the text of the mes-
sage Indicates, this sample program allows the user to force the shape of any
vertex "scen” by the light pen to be made square (vertex shape 6) until
pushbutton 11 is depresscd. The statement on line 8 causcs light pen hits to
be allowed. The WAITCHANGE statement of linc 9 shifts control of the sys-
tem to the terminal until some change occurs in the status of pushbuttons,

20

L INE

- oo oo ou oo
DLURNEEVORNVPPDWN -

- o
>

SUBKOUTINF SAMPLE

CALL CLEPHCI)

DOG START LTPEN VHOLE VEHTE), ALl
CALL MESSAG(2)

DOGSTHhING °*POINT TO VEHTICES TO LE®
CALL MASSAGCL)

DOGSTRING °*MADE SQUARE, PD 11l TO STOP®
DOG ALLIIT

VAITCEANGE

IF (PBC11)) CGOT0 3%

IF C(LPHITY +EQ. 5) GOTO 225

DOC START EXIST SHAPE VERTEX 6, (LPHIT2)
GOTO 15

TERMINATE

STOP

END

Flgure 6. Sample Interactive Program

21

light pon, or Teletype Input. When @ chinge occurs, communicationcells

in the ALIA environment arc updated and control shifts to line 10 where the
current status of pushbutton 11 s checked, If it has not been depressed by
the uscr, control {lows to line 11 where the communication cecll LPHITI §s
check.ed for a value of 0. A non-zero value indicates a light pen hit occurred,
and thc communlication cell LPHIT2 contains the Internal name of the ver-

tex which caused the hit. In this case, the statement on line 12 causes the
shape of the hit vertex to be square.

SUMMARY

This papcer has described how a remote computer graphics terminal
with proceseing power s used in a multi-console operating system as an alpha-
numeric console and an interactive graphics device. An Interactive Graph
Theory System was bullt in this environmont to exhlbit the effective use of
such a terminal and to demonstrate a design for a programming rrystem for
solving graph theoretic problems,

In order to express interactive graph theoretic algorithms, the cen-
tral computer's TORTRAN IV language has been enriched with data structure and
assoclat' o operations and a class of statements o control the existence and
display of graphs at the terminal. The Implomentation of this language employs
a separate module to specify the underlying memory structure using L6,

The terminal computer s managed by an exccutive program which in-
corporates an interpreter of a speclal-purpose command language orfiented
towards controlling the existence and display of graphs. It may be programmed
to camry out local functions as well as those which are performed as subroutines

of an intcractive program running In the central computer.

Examples of system usc and programming In the interactive ALLA lan-
guage have been presented.

22

A of the work described in this paper §s fully reported in the author's
Ph.D disscration [11}), which Includes complete programming manualis of
interactive ALLA and DOGGIL command language. Coples are avaiiable from
the author,

23

REFERENCES

| C BLRGLE
The theory of graphs and its applications
John Wiley anxd Sons NY 1964

2 G G bODD
APL - a language for associative data handling in PL/I

Proc I'JCC 1966 677-684

3 D K HSIAO
A file systen for a problem solving facility
Disscrtation In LE Univ of Pa 1968

4 T H JOHUNSON M S WOILI'BERG
The PDPMAP assembly system
Moore School of EE Report 68-11 Univ of Pa 1967

S). C ENOWLTON
A programmer's description of L6
CACM Vol 9 No 8 1966 616-625

6 L I' MOORL
Shortest path through a maze
Annals of the C ‘itation Laboratory of Harvard Univ

Vol 30 Harvard Uirav Pres 1959

7 R P MORTON
On-linc computing with a hicrarchy of processors
Dissertation in LE Univ of Pa 1968

8 R P MORTON M S WOLIBLERG
The input/output and control system of the moore school problem
solving facility
Moore School of LE Report 67-30 Univ of Pa 1967

24

10

11

12

N S PRYWES
Man-computer problen: solving with multilist
Proc IEEL 1966 1788-1801

R L WEXELBIAT
The development and mechanization of a problem solving {acility
Dissertation in EE Univ of Pa 1965

M S WOLFBERG

An interactive graph theory system

Dissertation in EE Univ of Pa 1969

also Moore School of Li. Report 69-25 Univ of Pa 19069

M S WOLFBERG P A T WOLI'GANG

UP.L6 - an L.b0 system for the 1BM 7040
Moore School of LE Univ of Pa 1966 Internal rcport

25 |

